Entrer un problème...
Algèbre linéaire Exemples
[11-215010-1-2008016]⎡⎢⎣11−215010−1−2008016⎤⎥⎦
Étape 1
Write as an augmented matrix for Ax=0Ax=0.
[11-2150010-1-200080160]⎡⎢
⎢⎣11−2150010−1−200080160⎤⎥
⎥⎦
Étape 2
Étape 2.1
Multiply each element of R3R3 by 1818 to make the entry at 3,33,3 a 11.
Étape 2.1.1
Multiply each element of R3R3 by 1818 to make the entry at 3,33,3 a 11.
[11-2150010-1-200808880816808]⎡⎢
⎢⎣11−2150010−1−200808880816808⎤⎥
⎥⎦
Étape 2.1.2
Simplifiez R3R3.
[11-2150010-1-20001020]⎡⎢
⎢⎣11−2150010−1−20001020⎤⎥
⎥⎦
[11-2150010-1-20001020]⎡⎢
⎢⎣11−2150010−1−20001020⎤⎥
⎥⎦
Étape 2.2
Perform the row operation R1=R1+2R3R1=R1+2R3 to make the entry at 1,31,3 a 00.
Étape 2.2.1
Perform the row operation R1=R1+2R3R1=R1+2R3 to make the entry at 1,31,3 a 00.
[1+2⋅01+2⋅0-2+2⋅11+2⋅05+2⋅20+2⋅0010-1-20001020]⎡⎢
⎢⎣1+2⋅01+2⋅0−2+2⋅11+2⋅05+2⋅20+2⋅0010−1−20001020⎤⎥
⎥⎦
Étape 2.2.2
Simplifiez R1R1.
[110190010-1-20001020]⎡⎢
⎢⎣110190010−1−20001020⎤⎥
⎥⎦
[110190010-1-20001020]
Étape 2.3
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
Étape 2.3.1
Perform the row operation R1=R1-R2 to make the entry at 1,2 a 0.
[1-01-10-01+19+20-0010-1-20001020]
Étape 2.3.2
Simplifiez R1.
[1002110010-1-20001020]
[1002110010-1-20001020]
[1002110010-1-20001020]
Étape 3
Use the result matrix to declare the final solution to the system of equations.
x1+2x4+11x5=0
x2-x4-2x5=0
x3+2x5=0
Étape 4
Write a solution vector by solving in terms of the free variables in each row.
[x1x2x3x4x5]=[-2x4-11x5x4+2x5-2x5x4x5]
Étape 5
Write the solution as a linear combination of vectors.
[x1x2x3x4x5]=x4[-21010]+x5[-112-201]
Étape 6
Write as a solution set.
{x4[-21010]+x5[-112-201]|x4,x5∈R}